5,555 research outputs found

    Distributed Stochastic Optimization over Time-Varying Noisy Network

    Full text link
    This paper is concerned with distributed stochastic multi-agent optimization problem over a class of time-varying network with slowly decreasing communication noise effects. This paper considers the problem in composite optimization setting which is more general in noisy network optimization. It is noteworthy that existing methods for noisy network optimization are Euclidean projection based. We present two related different classes of non-Euclidean methods and investigate their convergence behavior. One is distributed stochastic composite mirror descent type method (DSCMD-N) which provides a more general algorithm framework than former works in this literature. As a counterpart, we also consider a composite dual averaging type method (DSCDA-N) for noisy network optimization. Some main error bounds for DSCMD-N and DSCDA-N are obtained. The trade-off among stepsizes, noise decreasing rates, convergence rates of algorithm is analyzed in detail. To the best of our knowledge, this is the first work to analyze and derive convergence rates of optimization algorithm in noisy network optimization. We show that an optimal rate of O(1/T)O(1/\sqrt{T}) in nonsmooth convex optimization can be obtained for proposed methods under appropriate communication noise condition. Moveover, convergence rates in different orders are comprehensively derived in both expectation convergence and high probability convergence sense.Comment: 27 page

    Equivalence of Two Approaches for Quantum-Classical Hybrid Systems

    Full text link
    We discuss two approaches that are used frequently to describe quantum-classical hybrid system. One is the well-known mean-field theory and the other adopts a set of hybrid brackets which is a mixture of quantum commutators and classical Poisson brackets. We prove that these two approaches are equivalent.Comment: 9 page

    RSVG: Exploring Data and Models for Visual Grounding on Remote Sensing Data

    Full text link
    In this paper, we introduce the task of visual grounding for remote sensing data (RSVG). RSVG aims to localize the referred objects in remote sensing (RS) images with the guidance of natural language. To retrieve rich information from RS imagery using natural language, many research tasks, like RS image visual question answering, RS image captioning, and RS image-text retrieval have been investigated a lot. However, the object-level visual grounding on RS images is still under-explored. Thus, in this work, we propose to construct the dataset and explore deep learning models for the RSVG task. Specifically, our contributions can be summarized as follows. 1) We build the new large-scale benchmark dataset of RSVG, termed RSVGD, to fully advance the research of RSVG. This new dataset includes image/expression/box triplets for training and evaluating visual grounding models. 2) We benchmark extensive state-of-the-art (SOTA) natural image visual grounding methods on the constructed RSVGD dataset, and some insightful analyses are provided based on the results. 3) A novel transformer-based Multi-Level Cross-Modal feature learning (MLCM) module is proposed. Remotely-sensed images are usually with large scale variations and cluttered backgrounds. To deal with the scale-variation problem, the MLCM module takes advantage of multi-scale visual features and multi-granularity textual embeddings to learn more discriminative representations. To cope with the cluttered background problem, MLCM adaptively filters irrelevant noise and enhances salient features. In this way, our proposed model can incorporate more effective multi-level and multi-modal features to boost performance. Furthermore, this work also provides useful insights for developing better RSVG models. The dataset and code will be publicly available at https://github.com/ZhanYang-nwpu/RSVG-pytorch.Comment: 12 pages, 10 figure
    • …
    corecore